Pseudo-maximum Likelihood Estimation of Arch(∞) Models
نویسنده
چکیده
Strong consistency and asymptotic normality of the Gaussian pseudo-maximum likelihood estimate of the parameters in a wide class of ARCH(∞) processes are established. The conditions are shown to hold in case of exponential and hyperbolic decay in the ARCH weights, though in the latter case a faster decay rate is required for the central limit theorem than for the law of large numbers. Particular parameterizations are discussed.
منابع مشابه
Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models
The possibility of exact maximum likelihood estimation of many observation-driven models remains an open question. Often only approximate maximum likelihood estimation is attempted, because the unconditional density needed for exact estimation is not known in closed form. Using simulation and nonparametric density estimation techniques that facilitate empirical likelihood evaluation, we develop...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملA framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models
The statistical modeling of social network data is difficult due to the complex dependence structure of the tie variables. Statistical exponential families of distributions provide a flexible way to model such dependence. They enable the statistical characteristics of the network to be encapsulated within an exponential family random graph (ERG) model. For a long time, however, likelihood-based...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کامل